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ABSTRACT This article describes a method for clarifying
and sharpening radiographs. The method uses convolution
with a computed tomography reconstruction kernel and a
noise elimination procedure to control the noise amplification
of the convolution. The effect is to flatten global variations and
to sharpen and magnify local variations. Examples from in-
dustry and medicine are included.

Introduction

There are several reasons for the difficulty in reading radio-
graphs. In addition to superposition, three main problems
are as follows. (i) Signals due to features of interest are often
very small relative to those due simply to thickness-on the
order of 1/1000th for many soft tissue discriminations. (ii)
Even if the x-ray attenuation coefficient is discontinuous at
boundaries between tissues, the discontinuities are removed
by the integration and averaging of the x-ray process. Radio-
graphs seldom delineate edges. (iii) The same feature looks
different in different locations-e.g., in a flat background or
in a changing one.
The sharpening process is not image enhancement in the

usual sense. It does not involve thresholding, computer deci-
sions, edge detection, etc., but rather a specific mathemati-
cal property of the parallel beam x-ray transform

Pof(x) = f f(x + tO)dt, [1.1]

where 0 is the x-ray direction, x is a point in 6' (the subspace
orthogonal to 0), and f is the x-ray attenuation coefficient of
the object x-rayed. Pqf(x) is the attenuation due to f along
the line through x with direction 0.
Computed tomography provides a numerical approxima-

tion to the inverse transform (1)

f(x) = c A f Pof(Eox)dO, [1.2]

where EO is the orthogonal projection on 6', and A is defined
via the Fourier transform by

(Ag)^ (o) = 14 k(s).

FIG. 1. Effect of convolution on ellipses. The function g (Upper
left) is a large ellipse with small elliptical bumps (Lower left); 0.5g +
0.5k*g and k*g are shown (Right).

In dimension 2 and with a particular approximate 8-function
e, Eq. 1.4 is the famous reconstruction formula of Rama-
chandran and Lakshminarayanan (2). (e is called the point
spread function, and k is called the reconstruction kernel.)
The mathematical property used in the sharpening is pro-

vided by the Logan-Shepp ellipse theorem (3).
ELLIPSE THEOREM. If f is the characteristic function of a

2-dimensional ellipse with projection (-a,a) on the line 6',
then

1 Ixl<a
APof(x) = c lXI(X2 a2)-1/2 IxI [1.5]

In consequence, if k is a reconstruction kernel, k*Pgf is
constant on (-a,a) except near the ends, has negative dips at
the ends, and goes rapidly to 0 outside (-a,a): the convolu-
tion converts elliptical features along a line of the radiograph
into rectangular features, alleviating the three problems
mentioned above. A weighted average of the original and the
convolution contains both the sharpened features of the lat-
ter and the overall features of the former, but in a decreased
dynamic range, and with dips at the edges. The effect of the
convolution on ellipses is shown in Fig. 1.
As an approximation to the operator A, which entails both

differentiation and singular integration, convolution by k
creates a noise explosion, as shown in Fig. 2.

[1.3]

Because of the singularity of A, it is customary to replace f
by e*f, where e is an approximate function, to obtain

e*f(x) = k*Pof(Eex)dO k = cAPge.sn-I
[1.4]

FIG. 2. Noise explosion. The function g (Left) is the top part of a
line across a radiograph of a 0.01-inch steel shim, sandwiched in a
0.25-inch steel plate. The central dips come from two 0.02-inch di-
ameter holes in the shim, 0.01 inch apart. Other oscillations are
noise. (Right) The function is 0.5g + 0.5k*g.
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Noise Elimination

Depending on the measurement devices and the nature of the
problem, the signal-to-noise ratio on radiographs can be
quite small-on the order of 1/10th in the case of medical x-
ray film and soft tissue discrimination. In earlier work (1), a
provisional noise elimination procedure was devised for situ-
ations in which the signal-to-noise ratio is very small, but the
true signal is known a priori to be smooth, except perhaps
forjumps. The idea of the procedure was to correct in sever-
al steps. In the early steps, when good corrections are im-
possible, changes are made only at the worst points; as the
data improve, changes are made more often.
The procedure eliminates noise from a function g of one

variable that is known to be smooth except for jumps. At a
given stage, there are fixed an interval length L and a noise
bound N. For each point x, the medians of g are computed
on the intervals (x - L,x), (x,x + L), and (x - L,x + L). If
they are denoted by M(x), Mr(x), and M(x), the noise N(x) is
defined to be the minimum of lg(x) - M(x)l, g(x) - Mr(X)I,
lg(x) - M(x)I. If N(x) exceeds the bound N, then g(x) is re-
placed by M(x); otherwise, it is left alone. The bound N is
chosen so that in the first and second steps corrections are
made at 2% of the points, in the third and fourth steps at 4%
of the points, in the fifth at 12% of the points, in the sixth at
25% of the points, and in the seventh (and last) at all the
points, with averages instead of medians. The interval
lengths are 8, 8, 6, 4, 3, 2, and 2 in the seven steps. In prob-
lems without severe noise, the number of steps and the inter-
val lengths are decreased.

This procedure has been used in x-ray tomography, ultra-
sound tomography, and the analysis of individual radio-
graphs produced by x-ray and neutron beams. Some exam-
ples are found in ref. 1, and a detailed example showing the
operation of the procedure and the effect at each stage is
given in ref. 4. The noise elimination operator is called S.

FIG. 4. Sandwiched shim of Figs. 2 and 3. Among the several
holes (black spots), there are three pairs in a column to the left of the
center with distances apart of 0.01 inch and diameters of 0.04, 0.02,
and 0.01 inches. Sharp g (Right) = 0.5g + 0.25k*Sg + 0.25(k*Sg*)*.

they do have some relevance. The shim gives an indication
of the resolution of the process. The CT section shows what
happens to a more complex flat image and, also, the result of
another current sharpening technique called temporal sub-
traction. Figs. 6-8 show a jet engine blade, a low-contrast
phantom, and a human chest, respectively.

Discussion

Early use of simple mathematics to isolate local features
(breast lesions) from the background appeared in ref. 5.

In the mid 1970s, J. Kinsey tried (personal communica-
tion) k*g as an edge detector similar to differentiation. The
convolution has a more specific effect than differentiation in
the case of radiographs, but consistent results appear to re-
quire the noise elimination and averaging with the original.
In some cases, however, omission of the noise elimination

The Sharpening Operator

The sharpening operator combines convolution with a CT
kernel and the smoothing operator S to control the noise and
the dips at edges. If g = Pof is a function oftwo variables, let
Sg and k*g denote the result of applying the smoothing and
convolution to g as a function of the first variable with the
second held fixed, and let g*(x,y) = g(y,x). Usually, the
sharpening operator is given by

Sharp g = w1g + w2k*Sg + w3(k*Sg*)*, [2.1]

cut off below, with weights based on the flattening needed.
Effects of the sharpening operator are shown in Fig. 3.

Examples

Being flat already, the shim and CT sections shown in Figs. 4
and 5 are poor candidates for the sharpening process, but

FIG. 3. Effect of the sharpening operator. The functions shown
are Sharp g = 0.5g + 0.5k*Sg. (Left) g is the bumpy ellipse; (Right)
g is the shim.

FIG. 5. Oil flow through rock. To study the flow of oil through
rock, CT sections are taken before the flow and as it progresses, and
corresponding sections are subtracted. A subtraction is shown (Up-
per left), and a single section is shown (Upper right), with the sharp-
ened version of it (Lower right). Subtracted sections are matched
within one pixel, but subtraction artifacts are apparent in the exteri-
or of the rock and in the loss of the fine structure. High densities
(white) are due to sodium iodide in the water forcing the flow.
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FIG. 6. Jet engine blade. (Upper left) Original = g. (Upper right) 0.3g + 0.35k*Sg + 0.35(k*Sg*)*. (Lower left) 0.1g + 0.45k*Sg +
0.45(k*Sg*)*. (Lower right) 0.5k*Sg + 0.5(k*Sg*)*. The short dark horizontal lines on the left edge of the blade are holes. The sharpened images
show an apparent abnormality in the fourth hole, which can be confirmed in the original by extreme windowing that whites out the rest of the
image. The nature of the abnormality is not known.

can be useful in exaggerating fine lines or single pixels in the
digital radiograph (possibly coming from fine cracks or mi-
crocalcifications). In other cases, omission of the original
can be useful.
During the final preparation of this manuscript the article

of Kalender et al. (6) appeared with a method for sharpening
radiographs by decreasing global variations. The sharpening
operator in ref. 6 is given by Sharp g = w1g + w2(1 - S2)g,
where S2 is a 2-dimensional convolution smoothing operator.
Global features of g are preserved by S2, therefore, killed by
1 - S2. Since all features preserved by S2 are killed by 1 -
S2, the choice of S2 is dependent on the object x-rayed and
the particular features to be visualized.

In the present method, the sharpening operator is the same
in all cases (e.g., jet engine blade, phantom, and chest-radio-
graphs of very different natures) with the possibility of vary-
ing the weights for different degrees of flattening.
As shown by the shim in Fig. 4, the spatial resolution of

the sharpened radiograph is about equal to that of the origi-
nal. A primary factor in the spatial resolution of digital radio-
graphs is the x-ray beam collimation. In the case of the shim
and engine blade, the collimation was 0.005 inches wide and
0.010 inches high; in the case of the chest it was 0.7 mm wide
and 1.9 mm high. With moving objects, the scan time is a
factor. In the case of the chest, the scan time was about 5
sec.

Medical Sciences: Smith et aL
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FIG. 7. Low-contrast phantom. The mathematical phantom is an ellipsoid with a heavy outer shell and interior features with attenuation
coefficients shown in the sketch and circular horizontal cross-sections. The interior background has a coefficient of 0.20. To provide real noise
and some odd variations, the middle part of the shim of Fig. 4, normalized to a mean value of 0 and scrambled, is added. With attenuation values
on the scale 0-10,000, the maximum positive value in the normalized shim is 123; the average positive value is 18. These represent the maximum
and average values of the noise, as negative shim values include the holes, where the minimum is about -400. The attenuation change across
the lightest "artery" is 13: along the central horizontal line, attenuation is 9605 and 9607 to the left and right of the artery, respectively, and 9618
at the middle. Note that even the shim holes with a variation of 400 are not seen in the original. Sharp g = 0.3g + 0.35k*Sg + 0.35(k*Sg*)*. This
is a combined real and mathematical radiograph, not a cross-section.
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FIG. 8. Chest, oblique view. (Upper left) Original= g. (Upper right) 0.3g + 0.35k*Sg + 0.35(k*Sg*)*. (Lower left) 0.lg + 0.45k*Sg +
0.45(k*Sg4)4. (Lower right) 0.5k*Sg + 0.5(k*Sg*)*. At the arrow, a CT body scan showed a small ill-defined region of increased density, which
was not seen, even in retrospect, on unsharpened individual radiographs. After 1.5 yr, nothing of clinical significance has developed.
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